Service Oriented Architectures l":

Phillip J. Windley by ..n.d', e,

phil@windley.com

Service-oriented architectures (SOAs) are a particular kind of software
architecture that is designed to create a dynamically organized environment of
networked services that are composable and interoperable. The fundamental
building block of an SOA is a service and services are composed in specific ways
to create applications. SOAs separate the services from their implementation
using the notion of an interface. This interface creates a contract about how the
interaction between the parties will proceed. SOAs provide a number of benefits
for creating federations of services among disparate and loosely connected
organizations while allowing each organization to maintain its autonomy in terms
of how it builds and designs services as well as their ownership.

Traditional Application Architectures

To understand service-oriented architectures, let’s look first at a traditional
application architecture. To make this more concrete, consider the example of
an agency that is responsible for licensing cars and trucks. As part of its
responsibility, the agency desires to offer a Web application to vehicle dealers
that allows them to license a vehicle at the time it is purchased on behalf of their

Dealer Client

Dealer
Vehicle
Licensing

Local

Licensing Logic
Database

Tax Logic
Remote
Data

Synchronization

Dealer Logic

~

\ 4
Tax
Database

Figure 1: Traditional Application Architecture

WL

Dealer Data

customer. The application will also allow the dealer to calculate and pay taxes
due on the vehicle.

In a traditional application architecture, the application builders would be
responsible for linking the business logic for managing dealers, performing the
licensing, and calculating and collecting taxes into a single application. The
algorithms would need access to data about tax codes and valid vehicle dealers,
but since these are managed by other agencies, this data would have to be
synchronized to the local data store on a schedule that ensures that its not out of
date. Figure 1 shows schematically how this application might be built and
deployed and how the data would be synchronized.

This model presents the licensing agency with several problems.

1. The agency building the application is in the business of licensing vehicles
and understands the business processes associated with that task very
well. They are not, however, in the business of regulating dealers or
collecting taxes. Nevertheless, in this model, they will have to put
business logic associated with both of those tasks into their application. In
the most likely scenario they would write code that approximates the real
processes close enough for their purposes since reusable code that
performs these tasks is not available.

2. The data that the agency needs to run the application is owned and
maintained by other agencies. This data may change daily or ever hourly.
Operating the licensing application thus requires that the licensing agency
synchronize the data from the dealer and tax agencies often. This
synchronization may take place over a network on a batch basis or even
happen via physical media such as CD-ROM or tape. Keeping the data
synchronized and accurate presents a significant management challenge
to the license application operators.

Applications as Integrations of Services

Now, consider a service oriented architecture. In an SOA-based application, the
licensing agency can concentrate on what it does licensing. The application
designers build business logic concerned with licensing and the local data store
contains data about vehicle licensing. The data and business logic associated
with the tax and dealer functions would be built and operated by the agencies
responsible for those functions and presented to other agencies as a service that
can be accessed as needed. Figure 2 shows schematically how such an
application would be built and deployed.

This model has several advantages:

1. Each agency is responsible for building and operating applications
associated with the business processes that they own.

2. Each agency maintains its own data. Since data is never synchronized, it
is not out of date or inconsistent.

3. Multiple agencies may make use of the tax or dealer services. This keeps
each from building the business logic on their own and ensure that each is

using the same business logic.

Dealer Client

3
Dealer
Licensing Logic Vehicle Local
Licensing Database

Dealer Service Tax Service

Figure 2: SOA Application Architecture

This model also presents some additional responsibilities for each agency. Let’s
take the tax agency as an example. Previously the tax agency was only
responsible for shipping off the relevant data on some scheduled basis. Now,
they are responsible for creating and operating a service that meets the needs of
the licensing agency along with any other agency using the service. The service
must be accurate, reliable, secure, and scalable. Of course, what they get in
return is accurate tax collection and a knowledge that their data is up to date and
canonical.

Document Metaphor

Service oriented architectures differ from distributed architectures in the following
important way:

Distributed architectures are based on a notion of complex endpoints and
transport carrying simple data. Early distributed system designers were creating
a programming style that used hardware as a model for software development.
Hardware is characterized by complex components, chips that hook together in
simple ways. The data that is transported between chips is mere bits and even
when aggregated into busses rarely looks anymore complicated than an array of
bits. This model influenced the designers of early distributed systems to create
complex, rigid interfaces that carried simple, serializable data.

Service oriented architectures are characterized by simple endpoints and
transport carrying rich data. SOAs, in contrast, are focused on simple interface
models that exchange rich, structured data. Current implementations in XML can
carry complex data. Machine readable documents are used to publish interfaces
to services and these documents are carried between endpoints to affect overall
system behavior.

This concept is called the document metaphor.

SOA Model

Properties

Service oriented architectures are characterized by the following interrelated
properties.

Discoverable and Dynamic — Services are discovered using a directory.
Services are bound at runtime, rather than compile time.

Loosely Coupled — SOAs are composed of multiple services connected in such
a way as to be resilient in the face of network failures and latency. This loose
coupling gives SOAs a distinctly different architecture than programs that are
distributed, but still connected synchronously and in ways that make the overall
system brittle.

Locationally Transparent — SOAs are constructed in such a way that the overall
system is unaware of, or at least ambivalent to the location of various services.

Diversely Owned - SOAs may be composed of services which are owned and
operated by outside organizations. Diverse ownership implies that the published
service interface will be treated as a blackbox from the standpoint of the
programmers since they cannot penetrate the interface and modify code and
behavior behind it.

Interoperable — Standards ensure that services from differing organizations can
use each other’s services.

Composable — Applications in SOAs are created by composing pre-existing,
well-tested services from multiple providers.

Network-addressable — Networks are central to the idea of services that are
discoverable and interoperable. This allows applications to be composed that
run on different machines.

Self-healing — When applications are created by composing dynamically
discovered components that are owned by multiple organizations, the ability of
the system to rediscover and bind to working services when services fail is
critical.

The properties that define SOAs have some significant consequences:

Latency is a fact of life in SOA-based implementations. This follows from
locational transparency and diverse ownership and drives loose coupling.

Loose coupling is accomplished through asynchronous communication between
components. Asynchronous design is different from traditional systems design
and can be more challenging and requires different debugging skills.

Loose coupling and diverse ownership mean that interoperability and strong
standards are crucial to successful SOA deployment.

The Internet serves as a universal information bus between services.
Specialized protocols like DCOM, CORBA, and RMI have been used in many
distributed systems, but diverse ownership and locational transparency require
an information transport bus that is more universal. HTTP, SMTP, and other
Internet protocols reach everywhere and are universally understood.

The Players and Actions in a Service Oriented Architecture

A service oriented architecture has three component roles: client, service
provider, and service broker. This section describes those roles and the actions
they take in relationship to each other.

Clients

Clients are the requestors of services. A client is typically a software application
or service that requires a service. Clients make requests of service providers.

Service Providers

Service providers publish services and make them available to clients. Service
providers accepts client requests and exectute them. The service provider is
some software application or service running on a network addressable
computer.

Service Brokers

Brokers bring clients and providers together by providing a registry of known
services, along with the service contract (interface) so that clients can pick the
correct service. Brokers take advantage of the locational transparency of SOA-
based implementations and connect clients to any one of a number of service
providers who offer a given service contract.

Actions: Publish, Discovery, Bind and Execute

As shown in Figure 3, clients initiate a service request by contacting the service
broker and using the broker’s directory service to discover a service that has a
specific interface contract. The broker knows which service providers support
which interfaces because the service providers register with the broker by
publishing their supported interfaces. Once the broker returns the information
about the service provider, the client uses that information to bind to a particular
service at a service provider and sending it a request to execute that service.

Publish and discovery are two important ways that SOAs differ from more tightly
coupled architectures like those created with Enterprise Java beans. To use
EJBs you need to know where the service is and you have to conform, in a

manual way to the interface rather than automatically adapting as you can from a
self-describing, published interface like those found in SOAs.

Published interfaces differ from public interfaces. Public interfaces have a public
design, but are only known by known clients and thus can be changed because
all of the clients can be found and changed. Published interfaces might be used
by clients without the service operators knowledge or express permission. This
means that the contract represented by the interface cannot be easily changed.
One way to envision this is to think of the services in an SOA-based system in
the same way you think of documents on a Web server. Because each
document on the Web server has a URL, a distinguishing name, other
documents can link to it without the express permission or knowledge of the
document's owner. This creates a situation where URLs cannot be changed
easily because they represent a published reference to a document.

Broker

Publish

Client

Provider

Figure 3: SOA Service Triangle

Messaging and Message Exchange Patterns

Service oriented architectures are based on the idea that clients make requests
of services and receive responses from services via messages. Designing an
SOA-based application requires making choices about the messaging style,
applicable messaging patterns and message transport.

Messaging Style:

Synchronous

Figure 4 shows a schematic representation of a synchronous message
exchange. The client sends a request to the service and then blocks.
Meanwhile, the service completes its processing and sends back a response,
allowing the client to unblock and continue.

Synchronous messaging has a number of advantages. Synchronous message
passing is relatively easier to develop and debug than asynchronous messaging.
Programmers are used to thinking of processes synchronously and often miss
subtle bugs associated with asynchronous processing. Transaction processing is
also easier to do synchronously. However, synchronous messaging leads to tight
coupling and, thus should be avoided when latency is an issue. This makes it
more appropriate for accessing services on the local network, or in other tightly
controlled circumstances.

g _-2 - Request >
- : \
Clien —
Server
. WAIT Process
Time < >
\/
r
Response
Client el
Figure 4: Synchronous Messaging
Asynchronous

Figure 5 shows a schematic representation of an asynchronous message
exchange. The client sends a request to the service and receives an immediate
acknowledgement that the message has been received, but nothing else. The
client can continue on with other work while its waiting for the service to complete
its processing. When the service finishes, it sends the response to a message
queue where it waits to be picked up by the client.

The advantages of asynchronous message passing include

* Loose coupling between sender and receiver—if latency increases due to
network or processing congestion, for example, the client is designed for
an indeterminent response time.

* Does not block sender—the client is free to do other processing while the
request is being processed.

* Network does not need to be available since messages can be queued.

Request —

Time Process Process

l

-

Message
Queue

Server

Response

Client —

Figure 5: Asynchronous Messaging

Message Correlation

In a synchronous system, it is easy to tell which response goes with which
request because they are interleaved with a response always following
immediately after the corresponding request. In an asynchronous exchange,
there may be multiple requests made and multiple responses and they might be
interleaved in any number of ways. Correlation is the process by which a
messaging system determines which responses go with which requests. This
can be done using tokens attached to requests that the service guarantees it will
return unchanged so that the client can correlate responses to requests.

Message Delivery

A related concept to message correlation is message delivery. An asynchronous
messaging system can be set up to provide

* Guaranteed delivery
* Only-once delivery
* In-order deliver

To see why these are important, consider a bank account service taking requests
from clients for deposits, withdrawals, and transfers. In this example, guaranteed
delivery is important since clients will expect that once they’ve told “the system”
to transfer money, for example, that its been done.

Sometimes network or system errors can result in duplicate messages (or
messages that are sent twice). Only-once delivery ensures that a request won'’t
be delivered multiple times. Thus, a message to make a withdrawal will only be
processed once.

In-order delivery ensures that a series of requests are processed in the same
order that they were sent. So, if your bank account has $1000 and you sent a
message to deposit $1000 and then a message to transfer $1500, the deposit
would be guaranteed to happen first, avoiding an overdraft.

Popular Patterns

Messages are exchanged in several recurring patterns. This section discusses
three of the most common: request/response, publish and subscribe, and
broadcast/multicast.

request

. . response
Client Server

Figure 6: Request Response Pattern

Request/Reponse

Request/response is the simplest and most widely used messaging pattern. In a
request/response pattern that client and the service talk to each other directly
and as peers. Figure 6 shows a schematic representation of the
request/response message pattern. Request/response can be set up to use
either synchronous or asynchronous messaging, but synchronous is by far the
more common approach.

Publish and Subscribe

In a publish and subscribe pattern, the service provides a set of topics that it
creates messages about and an interface where clients can subscribe to a topic.
When the service has a message for a particular topic, it sends the message to
each subscriber for that topic. Figure 7 shows a schematic representation of a
publish and subscribe message exchange pattern. Note that the client only
notifies the service once that its interested in a particular topic, but may receive
multiple messages on that topic from the service.

subscribe ;

-,

AAA

Client publish Server

Figure 7: Publish and Subscribe Pattern

Broadcast and Multicast

Broadcast, as its name implies sends a message to every device or service in a
particular domain. The message is usually identical for every recipient.
Typically, no response is expected, although that is not always the case. Figure
8 shows a schematic representation of a broadcast message exchange.
Multicast is like broadcast except that it sends the message to only a specified
subset of the domain.

Server

Broadcast
Message

Client

Figure 8: Broadcast and Multicast Pattern

Building Blocks

Intermediaries

Because they have standardized, interoperable interfaces, service oriented
architectures naturally lend themselves to being augmented by services that
proxy the original service and add some new service or feature on top of the
original. These proxies are called active intermediaries.

Active intermediaries store and forward messages from one Web service to
another in a reliable way. Along the way, they can filter, transform, log, and
analyze the message flow in just about any way you can imagine. This is an
advantage over a directly connected model because active intermediaries can
add security, reliability, availability, scalability, and interoperability to a service
without modifying the service itself.

To see how this is possible, take the simple example of authentication and
authorization. Suppose you've built a program and made it available as a
service. Later you decide to restrict access to your service to a small collection
of trading partners. You could modify the service itself, but this makes it less
general, and thus harder to reuse in some other capacity. An active intermediary
can sit in front of your service and perform the authentication and authorization
using LDAP, SAML, or some other system—all without modification to the
original code.

The authentication and authorization proxy is an example of context-sensitive
filtering. The active intermediary is filtering the messages that are allowed to
pass to the Web service based on a particular context, in this case the authority

k,:ug =[]

Service
Cllent 2 Intermediary\ Server B
[. = <+

Client 3 Server C

Figure 9: Service Intermediary

of the agent making the request.

Because they can look inside the messages and make decisions about what to
do next, active intermediaries create networks of services. Messages are routed
through this network. A message representing a purchase order with enclosures
written in German may need to go through a language translation service, for
example, before its routed to the Chinese supplier.

A number of vendors supply active intermediary products that work with Web
services-based SOAs. Using these intermediaries in a design mitigates some of
the concerns that arise surrounding changing standards, security, and complex
deployments.

Aggregators and Orchestration

Aggregators provide a composite service based on a collection of other services.
Services oriented architectures are defined in terms of this ability to aggregate
services, but it is possible to build aggregators, special applications that are used
specifically for orchestrating the composition and workflow of the aggregated
services.

Figure 10 shows a schematic representation of how an aggregator works. The
client makes a request of the aggregator who fulfills the request by making
requests, in turn, of services A, B, and C.

y

=Ll

Service A
¥ pa
> >
: -« -«
Client Service Service B
Aggregator \
r,

=L

Service C

Figure 10: Service Aggregator

Aggregators and orchestration is important in a complex SOA-based application
because building the required workflow logic into each service, an external agent

executes the workflow. Using an aggregator helps to preserve the reusability of
the individual services because they can remain more general.

Identity and Security

Service oriented architectures create unique requirements for identifying who is
requesting services and securing them from unauthorized use. Traditionally
organizations have only had to manage the identities of the their employees and
a few outside partners. What’s more, perimeter defense in the form of firewalls
and hardened servers has been the primary means of protecting the digital
assets of the enterprise. An SOA-based application might access services in
many different organizations. The application is not just requesting data through
a query, but actually requesting that some function be executed on its behalf.
This presents a whole new set of challenges to enterprises deploying SOA-based
applications.

Rather than managing resources at the user, server, or network level, SOA-
based applications require that resources be managed as services, records,
documents, or even fields. Managing identity at this level implies that the
organization has a business architecture that can define the access control
policies for each resource and an efficient means of putting the policy into
practice once its created. Of course, since resources are in a constant state of
flux, the policy needs to be resilient and maintained.

Data in the Service Oriented Architecture

Databases are often treated as a place to persistently store variables for a
particular application rather than a collection of resources that can be used by
multiple applications. Designing data sources so that they can be used by
multiple applications is consistent with the intent of service oriented architectures.

Even though we may not know a priori exactly how that data will be used, there
are principals we can follow that will help in the design of generally useful data
stores. These principals are designed to ensure that data sources will be useful
in a wide variety of circumstances, not just those for which they were initially
designed. For the most part, adhering to these principles should not appreciably
increase the cost of creating the data source.

1. Every data record and collection is a resource. This principal reiterates
the idea that the data has an importance independent from any specific
application. Collections of resources are the results of queries and
represent a resource as well.

2. Every resource should be universally uniquely addressable on the
network. The standard way of creating universally unique addresses is to
use a URI. Giving each resource and collection of resources a unique
address ensures that each application can find and use the resource over
time and refer to it in a way that lets other applications find the same data.

3. The address for a given resource should remain the same as long as the
resource exists. For the address to be useful, it has to be consistent over

time.

. Data queries should be done in a way that is locationally transparent and
supportive of caching where appropriate. When this principal is followed
the data resources can be replicated and results can be cached for
reliability and performance.

. The format and style of a data query should be documented in a
structured way so that other applications can determine how to use it.

Just as services in an SOA should be self-describing, so should the format
of the data source be self-describing to aid in its use by other applications.

. Data returned from a query should preserve the structure of the original
data as much as possible. The structure of the data is important to further
use. A classic example of breaking this principal is to format the results of
a query as HTML rather than preserving the structure so that another
program can easily use it.

. Meta information about the structure should be available online to

describe the structure. The structure of the data should be well
documented and the documentation, in machine readable format, should
be available online.

. Provision should be made to translate data from one structure to other

useful structures and presentation styles. Because the structure of the
data is maintained as long as possible, it can be translated automatically
into other useful structures as required. For example, it could be
reformatted into HTML for presentation to a browser as a composable
step to the data query.

. Metadata describing the data (over and above its structure) should be
widely available online. Any useful metadata about the data should be
available either with the data or separately as is appropriate. This
metadata should be available online and in a machine readable format for
use by applications using the data.

10. Data should be returned in standard structures, where such exist. There

are a number of industry standards for structured data of one kind or
another. Using standard forms for the structure of the data increases the
interoperability of the data with other applications.

Principals of Loose Coupling

As we have mentioned, loose coupling is one of the most important features in a
service oriented architecture. Loose coupling is a necessary condition in SOA
because they are designed to function in the face of high latency and even
outright network failure. Furthermore, since services making up an application
can be owned and operated by many different organizations, loose coupling
prevents unnecessary dependencies which would make such an application
unmanageable.

Table 1 compares tight coupling and loose coupling for a number of different
properties. The comparison gives a good overview of how some architectural
decisions lead to tight coupling.

Tight Coupling

Loose Coupling

Interface Class and Methods Fixed verbs (i.e.
RESTian)
Messaging Procedure Call Document Passing
Typing Static Dynamic
Synchronization Synchronous Asynchronous
References Named Queried

Ontology (Interpretation)

By Prior Agreement

Self Describing (On The
Fly)

Schema

First-order

Higher-order

Communication

Point to Point

Pub & Sub /Multicast

Interaction Direct Brokered
Evaluation (Sequencing) | Eager Lazy
Motivation Correctness, Efficiency | Adaptability,
Interoperability
Behavior Planned Adaptive
Coordination Centrally Managed Distributed

Contracts

By Prior Agreements,
Implicit

Self Describing, Explicit

Table 1: Tight vs. Loose Coupling

| view this table as a continuum rather than a black or white distinction. Few
implementations will be in the “loosely coupled” column on every issue. These
architectural choices will be determined by many things. A particular service
implementation might pick a feature from one column or the other, mix and match
as it were, to get a desired result and the completed system will be more or less
loosely coupled depending on those choices.

In addition to the architecture choices listed above, there are a number of
implementation choices that affect the loose coupling of systems. The following
implementation principals will help create a loosely coupled implementation:

Avoid changing or extending the interface methods. Course-grained
systems have a small number of verbs and they should remain unchanged as
much as possible. HTTP is a perfect example of an interface with a small set of
fixed verbs (i.e. GET). The HTTP interface has had only two version changes in
over a decade of use.

Control change by using a dictionary interface. When a fixed set of verbs will
not work, a dictionary interface provides a set of verbs for finding and executing
right method. This is akin to data-driven programming in the Lisp world.

Calls should return documents not objects. The issue here is largely one of
granularity. In a loosely coupled system, where latency is a real issue, getting
back a pointer to an object isn't very useful.

Avoid binary compatibility. Systems that require binary compatibility aren't
loosely coupled since an upgrade on one end requires an upgrade on the other.

Don't confuse an API with a contract. This emphasizes the difference
between a protocol and an API. A protocol is a sequence of document
exchanges that is required for compatibility. An APl is more of a one-way
declaration of how the methods work. Protocols are a more useful metaphor in
a document-based SOA.

Version the contract. Versioning can be difficult to do. The task is made easier
using intermediaries . If you don't version, you're back to the tightly coupled
upgrade issue again.

Don't build an API for data transfer. The point here is pretty simple: we already
have an API (protocol) for data transfer. lts called HTTP. Don't invent another
one.

Benefits of SOAs

Service Oriented Architectures offer several significant benefits:

Code re-use - Creating a service layer on top of the business logic requires the
design and documentation of a complete interface to the service. Encapsulating
the code in an interface enables its use beyond the first application for which it is
developed. This has several important consequences:

Return on Investment - Code re-use increases the return on investment in the
original code because it can be used in multiple places.

Correctness - Code re-use increases functional correctness because the code is
subject to more users and diverse applications. Because it is a service, there's
no need for patches or code releases. Once its fixed on the server, the corrected
service is available to all. Service versioning is necessary to ensure that
downstream services that may be relying on incorrect functionality can be
updated and tested with the new version of the service outside of the production
environment.

Maintainability - The design and documentation of a service interface creates a
barrier that has several consequences to the maintainability of the code in the
system.

Productization - The service itself can be treated as a product with attendant
version control, bug tracking, etc. The architecture is likely to be well thought out
in connection with the interface. The rest of the system is using a well defined
interface to the service.

Security - The interfaces that define the service layer can be proxied by other
applications that provide authentication and authorization services in a more
general manner. These proxies provide identity services for the service layer in a
consistent way. This means that security code is kept out of the business logic,
increasing its capability for re-use and increasing the likelihood that security is
done correctly and in compliance with enterprise policy.

Focused Developer Roles - The interfaces focused on business operations
gives developers a chance to focus on specific areas of develop in two
dimensions. First, because service interfaces map to specific business domains,
developers have the opportunity to specialize in particular domain areas and
understand them well. Second, a layered architecture means that developers
can specialize in the technologies and programming practices that support each
layer such as database technologies, application and business logic, service
layer development, application assembly, and presentation layer, to name a few.

Better Alignment with Business Goals - Service interfaces are focused on
business operations. An SOA is created in terms of logical business operations
and the services needed to support it

Configuration-based Application Development - In an SOA, applications are
assembled from services and other code that is written to augment the services
and provide specific functionality. This assembly can increasingly be done using
workflow engines and other tools that allow the assembly to take place through
configuration rather than traditional programming.

Feature Augmentation - SOAs lend themselves to having proxies placed in
front of the service interfaces so that the features of a service can be augmented.
For example, an authentication and authorization service may be placed in front
of a service to add authentication and authorization functionality to the base
server. Another example is the augmentation of a service with a logging proxy
that provides strong logging mechanisms for service level auditing.

Better Scalability - the property of locational transparency means that service
clients can't tell which machine is servicing a request. This means that many
service requests can be processed in parallel.

Technology Interoperability - strong standards for interoperability between
services mean that the particular technology used to create a service, which
programming language it was written in, and what operating system it is on have
less importance than in more tightly coupled architectures.

Potential SOA Missteps

Service-oriented architectures have significant advantages, but there are some
areas that require special care and attention in a SOA:

High Availability. For an SOA to provide high availability services, the service
broker (including the service directory), and the message delivery system
(transport) must be reliable and trustworthy.

Sessions / Transactions. Database sessions and transactions can introduce
tight coupling into the system. To avoid this, maintain an abstraction level for
services above the level of database sessions and transactions. Multiple
services should not share a database session or transaction.

Versioning. Services should be versioned to support change management
activities and allow users to reduce the need for lock-step upgrades among
service providers and clients.

Performance Instrumentation and Documentation. Services should be
instrumented so that clients can determine where a request is waiting and
performance statistics surrounding requests of a particular type. This can aid
service assemblers in knowing what kinds of service levels to expect.

Remain Course Grained. Be careful to maintain a reasonable amount of work in
a service. Services that are too fine-grained create performance bottlenecks and
do not handle high latency situation well.

Environments. Determine essential environment settings for the service like
character-set (Unicode) and time parameters including time zone and daylight
savings if appropriate.

Logging / audit. High latency environments based on asynchronous messaging
and using services outside the firewall can be difficult to debug. Services should
be built so that they log their state and session information in such a way that
error detection becomes manageable.

Implementing Service Oriented Architectures with Web
Services

So far, in this document we have avoided the mention of specific technologies,
focusing instead on the properties and uses of service oriented architectures.
One can develop a system that has an SOA without any special help, but that
requires developing a significant amount of overhead to support he publish, find,
and bind functionality we've discussed. Alternatively, there are several
technologies that can be used to create SOAs.

One such technology is called Jini and provides a complete set of libraries in
Java that support building SOA-based applications. The technology that has
gained traction, however, and is garnering most of the attention goes by the
name “Web services.” This is an unfortunate name that is constantly confused
with the more general use of the term to refer to any application delivered over

Web. One way to define Web services is as self-contained pieces of code that
have three distinguishing properties:

1. They communicate in an interoperable XML protocol, such as SOAP.

2. They describe themselves in an interoperable XML meta-format, such as
WSDL.

3. They are able to federate globally through XML based registry services,
such as UDDI.

These three properties and the protocols that implement them achieve the bind,
publish, and find functionality of an SOA.

SOAP

SOAP, or the Simple Object Access Protocol, allows a client and server to
exchange requests and responses, performing the bind function of the SOA
model. SOAP is an XML-based protocol that describes how structured and typed
(usually XML) messages can be exchanged between multiple network nodes.
SOAP defines an <Envelope/> element that contains an optional <Header/>
element and a <Body/> element. The <Body/> element contains the message,
usually a request for service or a response to such a request.

WSDL

WSDL, or Web Services Description Language, is used by a server to publish the
services that it offers. WSDL is a service description language that gives the
service name, location, functions, and specific information about how to bind to
and use the service.

UDDI

UDDI, or Universal Description, Discovery and Integration, is a protocol that is
used by Web services clients to discover a particular service. UDDI creates a
directory of services. UDDI servers can federate to create directories that know
about more than just the local services published to the local UDDI server.

Transport

The method that is used for message exchange is called “transport.” The SOAP
specification does not specify how messages are transported, but practically
speaking, SOA-based implementations that are built with SOAP will send their
messages to each other in one of a few ways.

The most common transport mechanism for SOAP messages is HTTP, the
protocol of the Web. HTTP is a synchronous, request/response protocol and
hence, the easiest message exchange pattern to implement in HTTP is
request/response. Other types of message exchange patterns can be built on
top of HTTP with some effort.

Another common transport mechanism for SOAP messages is an asynchronous
messaging platform such as Sun’s JMS or IBM’'s MQSeries. Both of these
provide full-featured messaging platforms that will performs request/response,

publish and subscribe, or broadcast messaging with guaranteed, once-only, or
in-order options.

Of course, since SOAP doesn’t specify how transport happens, an SOA-based
system architect is free to specify whatever works best. This means that SOAP
messages could be exchanged using SMTP or FTP if that were convenient.
Also, new transport mechanisms that are developed in the future can be used
when advantageous.

Acknowledgements

Martin Jensen of Oracle suggested changes to the text and contributed the
section on “SOA Missteps.”

The table comparing loosely and tightly coupled decisions is from
http://www.freeroller.net/page/ceperez/20030628#principles_of_loosely_coupled
_api (accessed September 2003)

The implementation principals for loose coupling are based on an article by Bill
de Hora found at http://www.dehora.net/journal/archives/000300.html (accessed
September 2003)

